Anoxia as a treatment against Tetranychus urticae and Spodoptera littoralis

  • RANIA ABD EL-WAHAB Dr.
Keywords: Anoxia, CO₂, Reactive Oxygen Species, Spodoptera, Tetranychus

Abstract

The created anoxic environment has inferred its effect against specific agricultural pests as Tetranychus urticae and Spodoptera littoralis. It was depending on the exposure of both pests with certain stages to 0 ppm O₂ and 5000 ppm CO₂. After anoxia exposure for 8h, no hatchability was detected of both pests’ eggs. Consequently, hatchability percentages were 78.07% and 64.11% for T.urticae and S.littoralis, respectively, after anoxia exposure for 2h. While exposure to 4h to anoxic conditions resulted in a reduction of hatchability percentages which recorded 32.01% and 20.78% for the same arrangement, respectively. Then anoxia effect expanded on the survival percentages of the resulted larvae of T.urticae and S.littoralis, they were 20.36% and 31.78%, respectively, for 2h. While exposure to 4h to anoxic conditions resulted in a decrease in survival percentages which recorded 5.05% and 5.41% for the same arrangement, respectively.                                                                    

Estimated values of LT₅₀ were 5.7,4.1 and 4.77 h, respectively, for eggs, adult males and females of T.urticae, respectively. While, LT50s were 6.09,3.15,4.21, and 6.15 h for anoxia effect of eggs, 2nd and 4th larval stages and pupal stage of S. littoralis, respectively. Anoxic stress led to oxidative stress development. Excessive reactive oxygen species translated in the significant reduction of formation in reactive oxygen scavengers (ROS) in anoxia treatments with LT50 of both T.urticae and S. littoralis which were significantly lower than control. Ascorbate Peroxidase (APX) before exposure to anoxia was higher than after treatments.

References

Armstrong, G. A. B., Xiao, C., Krill, J. L., Seroude, L., Dawson-Scully, K. and Robertson, R. M.(2011). Glial Hsp70 protects K+ homeostasis in the Drosophila brain during repetitive anoxic depolarization. PLoS ONE 6, e28994. doi:10.1371/journal.pone.0028994
Bayley, J. S., Winther, C. B., Andersen, M. K., Grønkjær, C., Nielsen, O. B., Pedersen, T. H. and Overgaard, J.(2018). Cold exposure causes cell death by depolarization-mediated Ca2+ overload in a chill-susceptible insect. Proc. Natl. Acad. Sci. USA 115, E9737-E9744. doi:10.1073/pnas.1813 532115
Bergamini, C., Gambetti, S., Dondi, A. and Cervellati, C.(2004). Oxygen, reactive oxygen species and tissue damage. Curr. Pharm. Des. 10, 1611-1626. doi:10.2174/1381612043384664
Boardman, L., Sørensen, J. G., Johnson, S. A., and Terblanche, J. S. (2011). Interactions between controlled atmospheres and low temperature tolerance: a review of biochemical mechanisms. Front. Physiol. 2:92. doi: 10.3389/ fphys.2011.00092
Callier, V., Hand, S. C.,Campbell, J. B., Biddulph, T. and Harrison, J. F.(2015). Developmental changes in hypoxic exposure and responses to anoxia in Drosophila melanogaster. J. Exp. Biol. 218, 2927-2934. doi:10.1242/jeb.125849
Campbell, J. B., Andersen, M. K., Overgaard, J. and Harrison, J. F.(2018). Paralytic hypo-energetic state facilitates anoxia tolerance despite ionic imbalance in adult Drosophila melanogaster. J. Exp. Biol. 221, jeb177147. doi:10.1242/jeb.177147
Dittrich, V. (1962). A comparative study of toxicological test methods on a population of the two-spotted spider mite (T.urticae). J. Econ. Entomol. 55 (5) 644- 648.

Feron, O. (2009). Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother. Oncol. 92, 329–333. doi: 10.1016/j.radonc.2009.06.025

Golestan, M.N. and H. Rahimi 2017. Effect of modified atmosphere on obvious and hidden contamination to control of Plodia interpunctella (Hubner) and Tribolium confusum Jacquelin Du Val inside highly permeable packages. J. Biopesticides, 10(2): 83-89.
Harrison, J. F., Greenlee, K. J. and Verberk, W. C. E. P.(2018). Functional hypoxia in insects: definition, assessment, and consequences for physiology, ecology, and evolution. Annu. Rev. Entomol. 63, 303-325. doi:10.1146/annurev-ento-020117-043145
Hermes-Lima, M.,Moreira, D. C., Rivera-Ingraham, G. A., Giraud-Billoud, M., Genaro-Mattos, T. C. and Campos, É. G.(2015). Preparation for oxidative stress under hypoxia and metabolic depression: revisiting the proposal two decades later. Free Radic. Biol. Med. 89, 1122-1143. doi:10.1016/j.freeradbiomed.2015.07.156
Hochachka, P. W.(1986). Metabolic arrest. Intensive Care Med. 12, 127-133. doi:10.1007/BF00 254926.Moreira, D. C., Venancio, L. P. R., Sabinoa, M. A. C. T. and Hermes-Lima, M.(2016). How widespread is preparation for oxidative stress in the animal kingdom? Comp. Biochem. Physiol. 200, 64-78. doi:10.1016/j.cbpa.2016.01.023
Kern, C., Wolf, C., Bender, F., Berger, M., Noack, S., Schmalz, S., et al.(2012). Trehalose-6-phosphate synthase from the cat flea Cetenocephalides felis and Drosophila melanogaster: gene identification, cloning, heterologous functional expression and identification of inhibitors by high throughput screening. Insect Mol. Biol. 21, 456–471. doi: 10.1111/j.1365-2583.2012.01151.x
Lighton, J. R. B. and Schilman, P. E.(2007). Oxygen reperfusion damage in an insect. PLoS ONE 2, e1267. doi:10.1371/journal.pone.0001267
McEnroe WD (1961) The control of water loss by the two-spotted spider mite (Tetranychus telarius). Ann Entomol Soc Am 54:883–887

Mitcham E, Martin T, Zhou S (2006) The mode of action of insecticidal controlled atmospheres. Bull Entomol Res 96:213–222

Montzka S, Reimann S (2011) Chapter 1: ozone-depleting substances (ODSs) and related chemicals. In: World Meteorological Organization (ed) Scientific assessment of ozone depletion: 2010, Global Ozone Research and Monitoring Project—Report No. 52. Geneva, pp 1.1–1.108

Moreno-Martinez, E., Jiménez, S., and Vázquez, M. E. (2000). Effect of Sitophilus zeamais and Aspergillus chevalieri on the oxygen level in maize stored hermetically. J. Stored Prod. Res. 36, 25–36. doi: 10.1016/S0022-474X(99)00023-5

Nicolas G, Sillans D (1989) Immediate and latent effects of carbon dioxide on insects. Ann Rev Entomol.34:97–116

Ravn, M. V., Campbell, J. B., Gerber, L., Harrison, J. F., Overgaard, J. (2019). Effects of anoxia on ATP, water, ion and pH balance in an insect (Locusta migratoria). J. Experimental Biol.,222: jeb190850. doi: 10.1242/jeb.190850

Ristaino JB, Thomas W (1997) Agriculture, methyl bromide, and the ozone hole: can we fill the gaps? Plant Dis 81:964–977
Rodgers, C. I., Armstrong, G. A. B. and Robertson, R. M. (2010). Coma in response to environmental stress in the locust: a model for cortical spreading depression. J. Insect Physiol. 56, 980-990. doi:10.1016/j.jinsphys.2010.03.030
Rodriguez, E. C. and Robertson, R. M. (2012). Protective effect of hypothermia on brain potassium homeostasis during repetitive anoxia in Drosophila melanogaster. J. Exp. Biol. 215, 4157-4165. doi:10.1242/jeb.074468
Rodgers, C. I., Armstrong, G. A. B. and Robertson, R. M. (2010). Coma in response to environmental stress in the locust: a model for cortical spreading depression. J. Insect Physiol. 56, 980-990. doi:10.1016/j.jinsphys.2010.03.030
Sadeghi, G. R., Pourmirza, A. A., and Safaralizade, M. H. (2011). Effects of nitrogen and phosphine mixtures on stored-product insects’ mortality. Afr. J. Biotechnol. 10, 6133–6144. doi: 10.5897/AJB11.080

Seki M, Murai T (2012a) Responses of five adult thrips species (Thysanoptera; Thripidae) to high-carbon dioxide atmospheres at different temperatures. Appl Entomol Zool 47:125–128

Seki M, Murai T (2012b) Insecticidal effect of high carbon dioxide atmospheres on thrips eggs oviposited in plant tissue. Appl Entomol Zool 47:433–436

Shukla, E., Thorat, L. J., Nath, B. B., and Gaikwad, S. M. (2015). Insect trehalase: physiological significance and potential applications. Glycobiology 25, 357–367. doi: 10.1093/glycob/cwu125
Storey, K. B. and Storey, J. M. (1990). Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. Q. Rev. Biol. 65, 145-174. doi:10.1086/416717
Suzuki, T., Wang, C.H., Gotoh, T., Amano.H., and Ohyama, K.(2015). Deoxidant-induced anoxia as a physical measure for controlling spider mites (Acari: Tetranychidae). Exp Appl Acarol (2015) 65:293–305. DOI 10.1007/s10493-015-9881-8

Tang B, Wang S, Wang S-G,Wang H-J, Zhang J-Y and Cui S-Y (2018) Invertebrate Trehalose-6-Phosphate Synthase Gene: Genetic Architecture, Biochemistry, Physiological Function, and Potential Applications. Front. Physiol. 9:30. doi: 10.3389/fphys.2018.00030

Van Lenteren JC (2000) A greenhouse without pesticides: fact or fantasy? Crop Prot 19:375–384
Published
2020-03-21
How to Cite
[1]
R. ABD EL-WAHAB, “Anoxia as a treatment against Tetranychus urticae and Spodoptera littoralis”, IJCBS, vol. 1, no. 1, Mar. 2020.
Section
Articles